Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TWIG: a model to simulate the gravitropic response of a tree axis in the frame of elasticity and viscoelasticity, at intra-annual time scale.

Identifieur interne : 002C96 ( Main/Exploration ); précédent : 002C95; suivant : 002C97

TWIG: a model to simulate the gravitropic response of a tree axis in the frame of elasticity and viscoelasticity, at intra-annual time scale.

Auteurs : Catherine Coutand [France] ; Jean-Denis Mathias ; Georges Jeronimidis ; Jean-François Destrebecq

Source :

RBID : pubmed:21187101

Descripteurs français

English descriptors

Abstract

Trees are able to maintain or modify the orientation of their axes (trunks or branches) by tropic movements. For axes in which elongation is achieved but cambial growth active, the tropic movements are due to the production of a particular wood, called reaction wood which is prestressed within the growing tree. Several models have been developed to simulate the gravitropic response of axes in trees due to the formation of reaction wood, all within the frame of linear elasticity and considering the wood maturation as instantaneous. The effect viscoelasticity of wood has, to our knowledge, never been considered. The TWIG model presented in this paper aims at simulating the gravitropic movement of a tree axis at the intra-annual scale. In this work we studied both the effect of a non-instantaneous maturation process and of viscoelasticity. For this purpose, we considered the elastic case with maturation considered as an instantaneous process as the reference. The introduction of viscoelasticity in TWIG has been done by coupling TWIG to a model developed for bridges. Indeed from a purely mechanical point of view, bridges and trees are very similar: they are structures which are built in stages, they are made of several materials (composite structures), their materials are prestressed (wood is prestressed during the maturation process as a result of polymerisation of lignin and cellulose to form the secondary cell wall and concrete is prestressed during drying). Simulations gave evidence that the reorientation process of axes can be significantly influenced by the kinetics of maturation. Moreover the model has now to be tested with more experimental data of wood viscoelasticity but it appears that in the range of a relaxation time from 0 to 50 days, viscoelasticity has an important effect on the evolution of tree shape as well as on the values of prestresses.

DOI: 10.1016/j.jtbi.2010.12.027
PubMed: 21187101


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TWIG: a model to simulate the gravitropic response of a tree axis in the frame of elasticity and viscoelasticity, at intra-annual time scale.</title>
<author>
<name sortKey="Coutand, Catherine" sort="Coutand, Catherine" uniqKey="Coutand C" first="Catherine" last="Coutand">Catherine Coutand</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA/UMR 547 PIAF (Physique et physiologie Intégratives de l'Arbre Fruitier et forestier), 234 avenue du Brézet, F-63000 Clermont-Ferrand, France. coutand@clermont.inra.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA/UMR 547 PIAF (Physique et physiologie Intégratives de l'Arbre Fruitier et forestier), 234 avenue du Brézet, F-63000 Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mathias, Jean Denis" sort="Mathias, Jean Denis" uniqKey="Mathias J" first="Jean-Denis" last="Mathias">Jean-Denis Mathias</name>
</author>
<author>
<name sortKey="Jeronimidis, Georges" sort="Jeronimidis, Georges" uniqKey="Jeronimidis G" first="Georges" last="Jeronimidis">Georges Jeronimidis</name>
</author>
<author>
<name sortKey="Destrebecq, Jean Francois" sort="Destrebecq, Jean Francois" uniqKey="Destrebecq J" first="Jean-François" last="Destrebecq">Jean-François Destrebecq</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21187101</idno>
<idno type="pmid">21187101</idno>
<idno type="doi">10.1016/j.jtbi.2010.12.027</idno>
<idno type="wicri:Area/Main/Corpus">002F71</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F71</idno>
<idno type="wicri:Area/Main/Curation">002F71</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F71</idno>
<idno type="wicri:Area/Main/Exploration">002F71</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TWIG: a model to simulate the gravitropic response of a tree axis in the frame of elasticity and viscoelasticity, at intra-annual time scale.</title>
<author>
<name sortKey="Coutand, Catherine" sort="Coutand, Catherine" uniqKey="Coutand C" first="Catherine" last="Coutand">Catherine Coutand</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA/UMR 547 PIAF (Physique et physiologie Intégratives de l'Arbre Fruitier et forestier), 234 avenue du Brézet, F-63000 Clermont-Ferrand, France. coutand@clermont.inra.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA/UMR 547 PIAF (Physique et physiologie Intégratives de l'Arbre Fruitier et forestier), 234 avenue du Brézet, F-63000 Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mathias, Jean Denis" sort="Mathias, Jean Denis" uniqKey="Mathias J" first="Jean-Denis" last="Mathias">Jean-Denis Mathias</name>
</author>
<author>
<name sortKey="Jeronimidis, Georges" sort="Jeronimidis, Georges" uniqKey="Jeronimidis G" first="Georges" last="Jeronimidis">Georges Jeronimidis</name>
</author>
<author>
<name sortKey="Destrebecq, Jean Francois" sort="Destrebecq, Jean Francois" uniqKey="Destrebecq J" first="Jean-François" last="Destrebecq">Jean-François Destrebecq</name>
</author>
</analytic>
<series>
<title level="j">Journal of theoretical biology</title>
<idno type="eISSN">1095-8541</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation (MeSH)</term>
<term>Elastic Modulus (physiology)</term>
<term>Elasticity (MeSH)</term>
<term>Gravitropism (physiology)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Stress, Mechanical (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Trees (growth & development)</term>
<term>Trees (physiology)</term>
<term>Viscosity (MeSH)</term>
<term>Wood (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (croissance et développement)</term>
<term>Arbres (physiologie)</term>
<term>Bois (physiologie)</term>
<term>Cinétique (MeSH)</term>
<term>Contrainte mécanique (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Gravitropisme (physiologie)</term>
<term>Module d'élasticité (physiologie)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (physiologie)</term>
<term>Simulation numérique (MeSH)</term>
<term>Viscosité (MeSH)</term>
<term>Élasticité (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Bois</term>
<term>Gravitropisme</term>
<term>Module d'élasticité</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Elastic Modulus</term>
<term>Gravitropism</term>
<term>Populus</term>
<term>Trees</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Elasticity</term>
<term>Kinetics</term>
<term>Models, Biological</term>
<term>Stress, Mechanical</term>
<term>Time Factors</term>
<term>Viscosity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Contrainte mécanique</term>
<term>Facteurs temps</term>
<term>Modèles biologiques</term>
<term>Simulation numérique</term>
<term>Viscosité</term>
<term>Élasticité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trees are able to maintain or modify the orientation of their axes (trunks or branches) by tropic movements. For axes in which elongation is achieved but cambial growth active, the tropic movements are due to the production of a particular wood, called reaction wood which is prestressed within the growing tree. Several models have been developed to simulate the gravitropic response of axes in trees due to the formation of reaction wood, all within the frame of linear elasticity and considering the wood maturation as instantaneous. The effect viscoelasticity of wood has, to our knowledge, never been considered. The TWIG model presented in this paper aims at simulating the gravitropic movement of a tree axis at the intra-annual scale. In this work we studied both the effect of a non-instantaneous maturation process and of viscoelasticity. For this purpose, we considered the elastic case with maturation considered as an instantaneous process as the reference. The introduction of viscoelasticity in TWIG has been done by coupling TWIG to a model developed for bridges. Indeed from a purely mechanical point of view, bridges and trees are very similar: they are structures which are built in stages, they are made of several materials (composite structures), their materials are prestressed (wood is prestressed during the maturation process as a result of polymerisation of lignin and cellulose to form the secondary cell wall and concrete is prestressed during drying). Simulations gave evidence that the reorientation process of axes can be significantly influenced by the kinetics of maturation. Moreover the model has now to be tested with more experimental data of wood viscoelasticity but it appears that in the range of a relaxation time from 0 to 50 days, viscoelasticity has an important effect on the evolution of tree shape as well as on the values of prestresses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21187101</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2011</Year>
<Month>02</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8541</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>273</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Journal of theoretical biology</Title>
<ISOAbbreviation>J Theor Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>TWIG: a model to simulate the gravitropic response of a tree axis in the frame of elasticity and viscoelasticity, at intra-annual time scale.</ArticleTitle>
<Pagination>
<MedlinePgn>115-29</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jtbi.2010.12.027</ELocationID>
<Abstract>
<AbstractText>Trees are able to maintain or modify the orientation of their axes (trunks or branches) by tropic movements. For axes in which elongation is achieved but cambial growth active, the tropic movements are due to the production of a particular wood, called reaction wood which is prestressed within the growing tree. Several models have been developed to simulate the gravitropic response of axes in trees due to the formation of reaction wood, all within the frame of linear elasticity and considering the wood maturation as instantaneous. The effect viscoelasticity of wood has, to our knowledge, never been considered. The TWIG model presented in this paper aims at simulating the gravitropic movement of a tree axis at the intra-annual scale. In this work we studied both the effect of a non-instantaneous maturation process and of viscoelasticity. For this purpose, we considered the elastic case with maturation considered as an instantaneous process as the reference. The introduction of viscoelasticity in TWIG has been done by coupling TWIG to a model developed for bridges. Indeed from a purely mechanical point of view, bridges and trees are very similar: they are structures which are built in stages, they are made of several materials (composite structures), their materials are prestressed (wood is prestressed during the maturation process as a result of polymerisation of lignin and cellulose to form the secondary cell wall and concrete is prestressed during drying). Simulations gave evidence that the reorientation process of axes can be significantly influenced by the kinetics of maturation. Moreover the model has now to be tested with more experimental data of wood viscoelasticity but it appears that in the range of a relaxation time from 0 to 50 days, viscoelasticity has an important effect on the evolution of tree shape as well as on the values of prestresses.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coutand</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>INRA/UMR 547 PIAF (Physique et physiologie Intégratives de l'Arbre Fruitier et forestier), 234 avenue du Brézet, F-63000 Clermont-Ferrand, France. coutand@clermont.inra.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mathias</LastName>
<ForeName>Jean-Denis</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jeronimidis</LastName>
<ForeName>Georges</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Destrebecq</LastName>
<ForeName>Jean-François</ForeName>
<Initials>JF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>12</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Theor Biol</MedlineTA>
<NlmUniqueID>0376342</NlmUniqueID>
<ISSNLinking>0022-5193</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="Y">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055119" MajorTopicYN="N">Elastic Modulus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004548" MajorTopicYN="Y">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018522" MajorTopicYN="N">Gravitropism</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014783" MajorTopicYN="N">Viscosity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21187101</ArticleId>
<ArticleId IdType="pii">S0022-5193(10)00682-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.jtbi.2010.12.027</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Auvergne (région administrative)</li>
<li>Auvergne-Rhône-Alpes</li>
</region>
<settlement>
<li>Clermont-Ferrand</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Destrebecq, Jean Francois" sort="Destrebecq, Jean Francois" uniqKey="Destrebecq J" first="Jean-François" last="Destrebecq">Jean-François Destrebecq</name>
<name sortKey="Jeronimidis, Georges" sort="Jeronimidis, Georges" uniqKey="Jeronimidis G" first="Georges" last="Jeronimidis">Georges Jeronimidis</name>
<name sortKey="Mathias, Jean Denis" sort="Mathias, Jean Denis" uniqKey="Mathias J" first="Jean-Denis" last="Mathias">Jean-Denis Mathias</name>
</noCountry>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Coutand, Catherine" sort="Coutand, Catherine" uniqKey="Coutand C" first="Catherine" last="Coutand">Catherine Coutand</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21187101
   |texte=   TWIG: a model to simulate the gravitropic response of a tree axis in the frame of elasticity and viscoelasticity, at intra-annual time scale.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21187101" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020